Sponsors 2023

Welcome to xEVTechTalks 2023 

xEVTechTalks is a unique, week-long series of 20 individually hosted, free-to-attend live webinars dedicated to advanced electric vehicle battery technology innovation.

Established during the initial stages of the covid pandemic WeAutomotive Group launched this unique format of content to keep the industry connected. Since, xEVTechTalks has delivered over 1300 BEV content-led technical webinars covering a multitude of BEV industry challenges; led so far by 1890 industry expert speakers, viewed in total around the world over 500,700 times by automakers, Tier 1’s, and automotive suppliers! That is some accomplishment! We are officially the number #1, online foremost communication network for BEV engineers. This is thanks to our hundreds-of-thousands of OEM, Tier 1&2, technology and solution provider members, subscribers, patriots and viewers.

Take part in theBEV industries leading global webinar series where technology leaders showcase future innovations and disruptive technologies shaping the future of vehicle manufacturing.

“DuPont does many EV webinars with various 3rd party vendors. WeAutomotive Group is the only vendor where we get global coverage – every single time. We had true Homogeneous coverage from every major region with around 30% from the Americas, 30% from EMEA and 30% from APAC. I counted 37 separate countries registered for the last webinar, which is exceptional”

VP Global Marketing & Communication, DuPont

| What To Expect

WeAutomotive Group produce and organize some of the world’s leading and most revered BEV conferences, summits and exhibitions. That’s why our transition into webinar series was initially so successful. What makes our “TechTalks” particularly unique, is their very high OEM participation, attracting large groups of attendees and decision-making faculties from all the majors and innovative start-ups from across the world. Our programs are diligently researched and curated in partnership with the automotive manufacturing community, to ensure they address the most pertinent current challenges and key investment areas. This level of detail is part of our pioneering approach to content and ensures that we attract the highest level of attendees.

xEVTechTalks provide our attendees with an unparalleled technical- agenda and a way to access information that is specifically relevant to them; in a way that is convenient for them. Participants are able to join the webinars live or view the session recordings on demand. All registrations are automatically sent a link to live recording once that session is done.

xEVTechTalks will continue to disrupt the event space, giving the industry convenient access to high-quality technical information, that is curated specifically against today and tomorrows shared challenges and key investment areas.

As part of WeAutomotive Group’s premier xEV event portfolio, xEVTechTalks has become the premier online event for battery engineers to collectively address the key challenges and industry innovations surrounding the innovation of battery technologies.

Latest OnDemand BEV TECHTALKS 2023

Dielectrics : How To Simplify Complexity And Mitigate Battery Fire Risk

Robert Delgado, Global Market Strategist, eMobility, Graco Inc.

Find out more

For dielectric coatings to effectively prevent arcing or breakdown voltage in electric vehicle (EV) battery packs, the following must work together:
  • the right material or chemistry
  • the ability to mix and spray that chemistry on ratio at a consistent flow rate
  • an automation technique that handles specific part geometries
However, complex designs and applications often threaten dielectrics’ ability to safeguard EV batteries – and ultimately EV passengers. Robert Delgado, global market strategist for eMobility in the Industrial Division of Graco Inc., will explain how to simplify such difficulties without sacrificing battery performance and safety during this 60-minute webinar on Thursday 13 July at 3 p.m. CET / 9 a.m. ET.

Register Now

 

 

Simulation-Driven Design Using Tapes And Adhesives

Joey Benson, Application Engineering Specialist, 3M

Find out more

  • Electric vehicle manufacturers rely on adhesives to improve process efficacy, join lightweight materials, and meet multifunctional needs including crash resistance, thermal conductivity, electrical insulation, and noise vibration harshness (NVH) reduction.
  • Simulation is used extensively in the EV market to test structures virtually, reducing the time and resources required for physical testing. Material models for standard engineering materials are readily available, but adhesives exhibit more complex types of mechanical behaviors and thus require advanced testing and material calibration methods.
  • 3M supports customer simulation needs by providing adhesive material data cards that can be imported directly into FEA software.
  • The most suitable material model for simulating an adhesive depends on how the adhesive responds to loads and the objectives of the simulation. Viscoelastic models are typically employed to simulate pressure-sensitive adhesives or tapes, whereas linear elastic-plastic models or cohesive zone models are commonly used for simulating structural adhesives.

Register Now

 

 

Advanced Technology For Characterizing EV Battery Materials

Mike Hjelmstad, Applications Specialist, Oxford Instruments
Wei Liu, Applications Scientist, WITec
Wendy Nason Palmer, NMR Applications Specialist, Oxford Instruments America
Ted Limpoco, Senior Applications Scientist, Oxford Instruments Asylum Research

Find out more

Developing materials for next-generation EV batteries requires advanced analytical technologies such as Atomic Force Microscopy (AFM), NMR Spectroscopy, Energy Dispersive X-Ray Spectroscopy (EDS), Electron Backscatter Diffraction (EBSD), Wavelength Dispersive Spectroscopy (WDS), and Raman Imaging.  This webinar will be divided into components:
  • AFM – Applications of AFM that relate to nanoimaging of battery components and interfaces.
  • SEM – Cleanliness, particle size, shape, and composition analysis of powders and electrodes using EDS, EBSD, and WDS.
  • NMR –Leveraging diffusion and conductivity data from NMR for formulation development to gain insight into energy density along with charge/discharge performance.
  • Raman Imaging – Investigating the cycling-induced chemical changes and degradation of cathodes, anodes and separators.

Register Now

 

 

New And Innovated Approaches To Automating Your Bonding Solutions

Rachel Stephan, Application Engineer, 3M – Industrial Adhesives and Tapes Division

Find out more

  • Manufacturers are commonly faced with challenges related to labor availability, increasing costs and inflation, and improving quality – leveraging automation addresses many of these problems.
  • Bonding automation offers numerous benefits, including improved process efficiency, reduced defects, the ability to explore new solutions, and significant cost savings. By streamlining tape and adhesive dispensing and application, automation enhances productivity, precision, and overall operational effectiveness.
  • Partner with 3M to overcome your most critical bonding challenges, including tape and adhesive selection, design and simulation, and production automation.
  • VHB™ Extrudable Tape is an innovative new solution that combines many of the benefits of a tape, with the automation capabilities traditionally limited to liquid adhesives.
  • The RoboTape™ System for 3M™ Tape is an advanced solution that automates the application of 3M™ Tape in a process that was traditionally done manually.
  • The 3M Bonding Process Center can help you see what is possible for automating your bonding application.  Collaborate with 3M’s team of tape and adhesive automation experts to design a process that fits your application needs.
  • The 3M Bonding Automation Network is a collection of system integrators, dispensing companies and robotics experts that 3M will connect customers with to implement solutions.

Register Now

 

 

Innovative Bonding And Sealing Technologies Focusing On Performance, Simplicity In Processes, And Sustainability

Andrea Battisti, e-Mobility Project Leader – Sika Corporation
Fernanda Ito, e-Mobility Technical Sales Manager, North America – Sika Corporation

Find out more

  • Innovative bonding technologies: the power of fast, flexible, and bespoke processing solutions
  • Multi-materials bonding: addressing a constantly changing industry with a wide range of adhesives
  • Sustainability in Focus: the trend for end-of-life-friendly solutions for a greener future
Register Now

 

 

A Connected, Performance-Driven Electric Drive Development Process

How Simulation Will Help Overcome Key Industry Challenges In EV Development
Young-Chang Cho, Industry Process Expert Senior Specialist, Dassault Systemes
Satheesh Kandasamy, Industry Process Expert Director , Dassault Systemes

Find out more

Electric vehicle development to replace a mature ICE counterpart requires out-of-the-box thinking. The adoption of simulation-driven methodology is not only vital to the optimal usage of human resources and materials, but also the most viable solution to innovation. The consolidation of vehicle platforms by vehicle manufacturers demands a modular approach for electric motor design, which in itself lends to shared technology across vehicle platforms and manufacturers.
In this webinar, we present the value of using a unified modeling and simulation process that leverages the CAD-CAE connectivity for developing a new electric drive system or re-using one from an existing vehicle program. With the creation of a modular, fully-parametric and simulation-friendly electric drive model, it is possible to explore untouched design possibilities and test all possible scenarios in a more affordable time frame—thereby, accelerating the vehicle development program and preventing valuable engineering resources from being wasted.

Register Now

 

Assessing Technologies For Dielectric Protection For Battery Cells And Cooling Plates

Eric Dean, Global Business Development Manager, Parker Lord
Emmanuel Pitia, PhD, Staff Scientist, Parker Lord

Find out more

  • Identify and compare key dielectric solutions for electrical insulation of battery components
  • Advantages and Disadvantages in manufacturing process
  • Comparison of Electrical insulation performance
  • Comparison of Edge coverage performance
  • Comparison of Adhesion and durability performance

Register Now

 

 

A Connected Process To Develop Battery And Fuel Cell Electric Vehicle Propulsion Systems

How Simulation Will Help Overcome Key Industry Challenges In EV Development
Chin-Wei Chang , Industry Process Expert Senior Specialist, Dassault Systemes
Dave Mukutmoni , Industry Process Expert Specialist, Dassault Systemes
Speaker Bios | Company Profile

Find out more

The development of vehicles powered by battery or hydrogen requires out-of-the-box thinking. The adoption of simulation-driven methodology is not only vital to the optimal usage of human resources and materials, but also the most viable solution to innovation. The consolidation of vehicle platforms by vehicle manufacturers demands a modular approach for electric motor and battery pack design, which in itself lends to shared technology across vehicle platforms and manufacturers.
While significant resources are allocated to develop new battery technologies, vehicle manufacturers are looking into alternative fuel sources such as hydrogen due to stringent timelines to eliminate the sales of internal combustion engine (ICE) based vehicles. Fuel cell electric vehicles (FCEVs) operating with green hydrogen technology are a promising alternative to battery electric vehicles (BEVs). Fuel cells are more suitable for large vehicles such as trucks and trains considering the challenging battery size requirements for such large vehicles. In addition, they require less expensive commodities while tending towards zero emission, zero waste and no grid impact.
In this webinar, we will share a simulation driven methodology that can be adopted at any stage of propulsion system development for both BEVs and FCEVs with a robust, industry validated connected process. This includes leveraging pre-packaged workflows that apply to electric vehicles such as inverters and electric drives, as well as to bipolar plates and gas diffusion layers in hydrogen fuel cells. This highly scalable, customizable process will empower propulsion system engineering teams to develop solutions that are both suitable for the vehicle platform and exceed industry requirements.

Register Now

 

One Step Joining For Reliable Electrical Components: Cell-To-Cell With E-Clinching

Brendan Kenyon, Head of Technology – USA, Tox Pressotechnik USA

Find out more

The session addresses a simple joining of materials with the highest conductivity joint – keeping electrical resistance (and heat generated) to a minimum – reducing heat, reducing cooling systems energy consumption- in tern contributing to increasing vehicle range.
  • Connecting aluminum, copper and other metals to connect leads and cells together
  • How to connect different elements of the battery: E Clinching overview
  • How the Tox e-clinching process works
  • Solutions approach for the clinching process
  • Solutions approach to oxide layer challenge
  • Solutions approach for contact corrosion challenge
  • Application samples
  • E-clinching in multi-layer applications beyond two sheets

Register Now

Consequences Of Extreme Climate And Weather Conditions On Li Battery Packs And How Adhesives Can Help Mitigate Them

Richard Cohen, OEM Business Development Manager – EV – Marine / Agriculture / Construction / Mining Equipment, HB Fuller
Michael Owens, Business Development Manager EV/OEM, HB Fuller

Find out more

  • Extreme climate and weather conditions pose significant challenges to Li battery packs, including temperature fluctuations, moisture exposure, and mechanical stresses.
  • High temperatures can accelerate the degradation of Li batteries, leading to reduced performance, shorter lifespan, and safety risks such as thermal runaway.
  • Cold temperatures can decrease the battery’s capacity and increase internal resistance, impacting its efficiency and overall performance.
  • Moisture exposure, whether from rain, humidity, or submersion, can cause corrosion and short circuits within the battery, leading to malfunctions or even failure.
  • Mechanical stresses from vibrations, impacts, or thermal expansion/contraction can damage the battery’s structural integrity and electrical connections, compromising its performance and safety.
  • Adhesives can help mitigate these challenges by providing insulation, sealing, and structural support to Li battery packs. They can offer thermal management properties, preventing heat buildup or dissipation, and act as a barrier against moisture ingress. Additionally, adhesives can enhance the mechanical strength and shock resistance of battery packs, protecting them from external forces. Proper adhesive selection and application ensure improved reliability, lifespan, and safety of Li battery packs in extreme climate and weather conditions.

Register Now

 

Past BEV Techtalks 

Modeling Structural Adhesive Joints In Electric Vehicles

Pressure Sensitive Adhesive (PSA) Applications In E-mobility Applications

Automating Your Adhesive Application

Battery Interconnect Technology And Outlook

In Pursuit Of Silence Inside BEVs: The New Products Behind The Next Level Of Acoustic Comfort

Don’t Just Delay Cell-to-Cell Thermal Propagation, Stop It

Liquid Cooling For EV Charging: How To Make Connections That Drive Performance & Reliability

Thermal Management & Bonding of Lithium Battery Cells & Modules

Thermal Conductive Adhesives For Next Generation Cell-to-Pack Configurations

Use Of Adiabatic Calorimetry In Battery Safety

Building Digital Twins Towards A Complete, Faster, Cost Effective & More Optimal Design Of Vehicles

Thermal Management Optimization For The Future Of Battery Designs

Improve Process Efficiency Through Thermal Adhesive Simulation For Tool Path Optimization & Module Assembly

Battery Immersion Cooling: The Lightest And Safest Solution For EVs And HEVs

Engineering The Thermal & Safety Challenges In Next-Generation Battery Packs

Low Carbon Footprint Technologies For Automotive Acoustics And Battery Composites: The Key Enablers For Sustainable Mobility

The Basics Of UN 38.3 And The Requirements For The Transportation Of Lithium Batteries

Cell & Battery Abuse: Development Of Thermal Runaway / Propagation Tests For EV & Stationary Batteries

EVSE Charging And Safety Standards, Going Beyond Level 1 And 2

Future Of Water-Glycol Cooling In Electric Vehicles

Adhesive & Sealing Systems For High-Voltage Batteries In Electric Vehicle

Material Solutions For Module Integration For Cylindrical Cells

Enabling Smarter Battery Pack Design & Assembly Processes With Innovative Adhesive, Sealant & Thermal Technologies

Innovative Thermal Interface Materials: How Adhesives And Sealants Are Accelerating xEV’s

Propagation Control Strategies And The Use Of Flexible Graphite Heat Spreaders

Full System Solutions To Enable Battery Pack Assemblies With Innovative Adhesive & Thermal Management Solutions

Overcoming Technical & Cost Challenges For Next Generation Automotive Batteries

Understanding The Thermal And Safety Challenges In Next-Generation Battery Packs

Why Immersed Battery Cooling

Monitoring Cell Temperature To Optimize Battery Performance And Design

Extending Battery Life of Electric Vehicle Fleets

Silicone Foams And Thermally Conductive Silicones In Battery Pack Assembly

Simulation To Aid Design: Accurately Predicting Thermal Performance And State Of Health Of A Battery Pack

Methodology For Modelling And Simulating Battery Thermal Runaway Events

Thermal Interface Materials – Gap Filler Liquids For Battery Systems

Specifying Thermal Management Solutions For Battery Pack Design

Battery Thermal Comfort: A Multi-Component Approach

EV Battery Pack Design And Material Selection For High Performing Batteries

Improved Methods For Leak Testing Li-Ion Batteries

Three Innovative Material Solutions To Address Technical Challenges In Automotive Electrification

Battery Connection Solutions In e-Mobility: 3 Distinct Technologies For Battery Manufacturing

Solving A Burning Issue: Dealing With Thermal Runaway

Driving Toward The BEV Tipping Point: Solving cost And Scalability Challenges

Upscaling Processes For New Battery Raw Materials From Laboratory Into Industrial Production

Breakthrough Silicon Anodes For Next-Gen EV Batteries

Material Options For Insulating And Protecting Power Distribution And Cooling Components In The Battery

Making The Next Super-Battery Solid-State Batteries

Efficient BMS Testing Throughout The BMS Development Lifecycle

Demystifying BMS Hardware-In-the-Loop (HIL) Testing

Methods For Leak Testing Lithium-ion Batteries

Thermal Propagation Prevention: Materials, Application, & Automation Techniques

How New Laser Technologies Can Help Advance Your Battery Manufacturing

Introducing Battery Intelligence: The Key To Powering Your Battery Program Through COVID-19 And Beyond

How To Advance Aluminum Laser Welding In Automotive Structures

EV Battery & Electrification Testing – From the Grid To The Road

Choosing The Right Scanner And Laser Solution In Battery Manufacturing

Using Clad Metal Innovations For Battery, Charging, And Thermal Management Challenges In Automotive Electrification

Powder Coating Solutions For Electric Vehicle Components

Innovative Solutions & Performance Materials For Lithium Ion Battery Packs

EV Battery Simulation, Accurately Predicting Performance & State Of Health

Upscaling Processes For New Battery Raw Materials From Laboratory Into Industrial Production

COVESTRO: New Ways To Manage Heat – Makrolon® TC

H.B. Fuller’s Innovative Materials For EV Batteries

Hybrid Electronic Control Technology For HV DC Switching

Battery Pack Material Selection & Design For Scaled Mass Production

Pressure Sensitive Adhesive (PSA) Applications In Li-ion Battery Assembly Processes

Laser Solutions For Demanding Battery Manufacturing Applications

Increasing Thermal Transfer In EV Batteries Through The Use Of Openair-Plasma® Technology

Engineering The Thermal & Safety Challenges In Next-Generation Battery Packs

Testing Battery Sensitivities of EV Subsystems Using Battery Simulation And Hardware-In-the-Loop (HIL) Techniques

Technical Manufacturing Audits Of Cell Manufacturers

Translating FTRC Results Into Practical Thermal Analysis Techniques

Why Is The Ultra-Thin Heating Polyimide Film The Best Value Solution For Battery Warm Up?

Robust Early Detection Of Thermal Runaway (REDTR)

Sensor Optimization For Effective Thermal Management And HP/HX Control For xEV And Stationary Storage Batteries

Liquid Cooling For EVs – Cooling Strategies & Avoiding Issues For Reliable Fast Charging Electric Vehicles

Safer, Cooler, Faster, And Farther – Adhesives For Thermal Solutions In EV Battery Packs

Innovative Material Solutions To Address Electric Vehicle Safety & Thermal Management Challenges

Cell & Battery Abuse: Development Of Thermal Runaway/Propagation Tests For EV & Stationary Batteries

Thermal Propagation Control Strategies and the Use of Flexible Graphite Heat Spreaders

Staying Cool – Thermal Management When No Two Battery Packs Are The Same

EV Battery Design for Manufacturability: Process to Production

Temperature Counts: Increasing xEV Safety, Comfort, Range And Performance With NTC Sensors

Next Generation Silicone Solutions for xEV Battery Challenges

Integration Of The Battery Casing With The Cooling Plate, Enabled By A Coolant-Resistant Structural Adhesive

Innovations In Electric Vehicle Cooling Technologies

Sensor Design And Optimization For xEV, EVSE, And ESS Thermal Management

EV Battery Design for Manufacturability: Thermal Management Troubleshooting

How Adhesives Material Science Can Support Sustainability Goals For Automotive

Review Of Battery Cooler Brazing Development: Case Study

WeAutomotive Group delivers unique, high-value, content-lead technical agendas and networking forums for the Electric Vehicle Sector.

Chat: Set private and group panellist chat settings for attendees and panellists

Q&A And Polling: Manage and share audience input in Q&A dialog box where attendees ask questions, either live audibly or text answers

Attendee “Raise Hand”: Increase attendee engagement by allowing virtual hand-raising

Attention Indicator: Track how engaged your audience is with your content and which viewers show the most interest

HD Video And Audio

Multiple live video presenters and panellists can share their webcam and interact with the audience; If you’d prefer, you can remain unseen, or just post a profile picture.

Live Broadcasting

We can broadcast live across all social media channels including Facebook Live, YouTube and LinkedIn integrations.

Full Featured Host-Controls

Mute/unmute panellists, and promote attendee to panellist, giving them audio and video capabilities for enhanced engagement.

Reporting & Analytics

Get reports on registrants, attendees, polling, engagement levels and Q&A for follow up.

On-Demand Viewing

Host larger-scale events with help from our team, including planning, rehearsal and live support.

    Register your email and we'll keep you informed about our latest content and events.
    Unsubscribe anytime.

         By registering to WeAutomotive Group email alerts you agree to our Terms Of Use & Privacy Policy